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of the iterative calculation.
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Using the Adams-Gilbert local-orbital theory,

self-consistent local orbitals for the fce lithium halide crystals.

it has been possible to obtain approximate
In this formalism, terms

to first order in interatomic overlap are included. Nearest neighbors are considered ex-

actly in this formalism, and more distant neighbors in a point-ion model.
All relativistic effects are neglected in this cal-

Roothaan is used to obtain the solutions.
culation

I. INTRODUCTION

Because of the introduction of localized-orbital
theories by Adams, ! Gilbert,? and Anderson, *
self-consistent Hartree-Fock solutions for ground-
state wave functions of polyatomic systems have
become possible. The author has taken the theory
of Gilbert, expanded the environment in powers of
interatomic overlap, and retained terms to first
order in interatomic overlap.* This seems justified
for most ionic or insulating solids, since the over-
laps are typically of the order 0.1 or less.® In the

TABLE I. The values of Ay; and Z,; are given for

The method of

original paper by the author, self-consistent or-
bitals for the LiH crystal were reported. In the
present paper orbitals are obtained for LiF, LiCl,
LiBr, and Lil using the analytic Hartree-Fock
technique of Roothann® in a somewhat modified
form.

These localized orbitals, which the author ob-
tains for the ground state of the lithium halide crys-
tal, should prove very useful for band-structure
calculations. The preliminary results for LiCl
crystal have been used with great success by the
author in computing a band structure.” The author

the s levels of the Li*, F~,Cl~, Br~, and I~ ions.

Li F~ C1- Br- 1~

J Ay Zo; Ayj Z o4 Ay Zoj Ay Z; Ay Zoj
1 0 2.69 0 10,040 0 18.9832 0 37.3527 0 56.5239
2 0 4,00 0 8.3691 0 14,7941 1 33.1430 1 26,1681
3 0 2.00 0 5.5505 1 14,7181 2 17.2808 2 24,7445
4 1 4, 9546 1 9.6220 2 16,3407 2 12,7500
5 1 3.3675 1 6.7665 2 8.4198 3 10. 0218
6 1 1.9804 2 6.2190 2 6.6235 3 5.2591
7 1 1.1869 2 3.2450 3 6.6182 3 3.3269
8 2 2.1679 3 3.4730 4 3.0142
9 2 1.3550 3 2.1970 4 2.2501

10 3 1.4859 4 1.4859

11 4 1.1889
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TABLE II. The values of Ay; and Z,; are given for the p levels of F~, C17, Br~, and I"~.
F c1- Br— =
J Ay Zy; Ay Zy Ay Zy Ay Zy
1 0 7.1171 0 13.7900 0 23.3102 0 26,0738
2 0 3.5586 0 8.8355 0 15.6532 1 19.6079
3 0 2.4367 0 5,3987 1 14,8256 1 9.2975
4 0 1.0219 1 4.0186 1 9.5909 2 8.0386
5 0 0.5003 1 2.4367 1 6.1399 2 4.2627
6 1 1.6382 2 5.3085 2 2,4794
7 1 0.8219 2 2.8150 3 2.4546
8 1 0.4120 2 1.6374 3 1.6713
9 2 1,1277 3 1. 0150
10 3 0.5075
has also completed a detailed study of the band - 2o(Fis T ,) (1)

structure of LiCl using the final LiCl local orbitals.®

These local orbitals should also prove useful for
computing lattice constants, binding energies, and
the elastic properties of the pure solids. Inaddition,
these orbitals should provide an excellent starting -
point for studies of color centers in these solids.

Computer codes were developed, for this calcu-
lation by the author, for the IBM 360-75 computer.
Sufficient accuracy has been maintained in the
codes and in self-consistency requirements so that
the one-electron energy parameters appear to be
accurate to about +2 in the fourth significant figure
in virtually all cases. In Sec. II the local-orbital
method is discussed as are the techniques of solu-
tion. In Sec. III numerical results are presented
for the Li*, F-, Cl°, Br-, and I" ions as well as for
the crystals. The free-ion results are compared
to the other calculations on these systems and con-
clusions are drawn from this comparison.

II. LOCAL-ORBITAL TECHNIQUES

A. Local-Orbital Equation

In the case of solids with closed-shell ground
states one may write the Hartree-Fock operation
for the solid in the form

Zd - - -> - -

F¢=—Vf—22‘+ +4 |r,-—r,|‘lp(r,,r,~)dr,

TABLE III. The values of Ay; and Zy; are given for
the d levels of Br~ and I™.

J Ay; Br Zy; 2y ! Zy;

1 0 16. 0578 0 19,7943
2 0 10, 0855 0 11,0375
3 0 7.2889 0 7.1802
4 0 4,7416 1 6.9183
5 0 2.9679 1 4,4943
6 1 3.0332
7 1 2.2939

T, - 1,16, )

The operator I(i, j) interchanges coordinates ¢ and
j. In Eq. (1), the Fock operator for the ith elec-
tron is in Ry, Z, is the charge on the Ath nucleus,
'}.IA, is the radial vector from the Ath nucleus to
the ith electron. The summation is over all nuclei
in the polyatomic system. p(F,%’) is the spin-in-
dependent part of the kernel of the density opera-
tor and is seen to be

p(F,F)= 25 |Ai@NS: 5, BIEN| . (2)
Ai,Bj

The quantity S} 5, is the Ai, Bjth element of the
inverse of the overlap matrix for the solid and may
be evaluated using the familiar Léwdin expansion:

S3i,85= 041,85~ Sai,85= 0a1,85)
+25 (1=6c)(1 = 6c5)Sas,cxScrmst "
CK
(3)
with
Sai,8;=(Ai|Bj) .

In the above we allow for the case in which the
Hartree-Fock orbitals are not orthogonal. As has
been demonstrated by Gilbert, ? if one removes the
restriction on orthogonality in the Hartree-Fock
case, one is able to add in an additional constraint
such that the Hartree-Fock equation is of the form

(Fi=pUsp)bai=€a:0a; - (4)

In Eq. (4) U is an arbitrary function, chosen to
maintain localization. It is convenient to break the
Fock operator into two parts such that

Fi=F,+U, , (5)

FA:—vf—Tl_zi—ZéT+4f|F,.—F,|'12 |AR(F,))? dF,
Ai &

Y IAk(I*W)(Al(I’j)Ika’A, . (6)
kol 1T, = 1,110,5)
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TABLE IV. The lithium orbitals for the free ion and in the crystals. The normalization chosen is such that
chgoj= 1.
Chos
j Free ion LiF LiCl LiBr Lil
1 0,587 107 0,532 146 0.56527 0,563 807 0.576 913
2 0.387533 0.401 144 0.39311 0.393430 0.390119
3 0.710720 0.745 590 0.72521 0.726 178 0.717620

sion for U, and pU, p in powers of the interatomic
overlaps and retains terms linear in overlap one
finds?

The expression for U, is found by subtracting Eq.
(6) from Eq. (1).
If one has U, = U, and if one expands the expres-

|

(Vz 2Z+
Al

SEYENCY RS TATICSIEMERESSVEINCA) A IS KEATIEN
i k

2 '
ZB 42 f¢’31 (F)| Fya] dra‘em)‘l)m(ﬁ)

Bl

42/‘15,4, )| Fpa| t dfy - Z,

( Z""Zg’& 42 ¢5;(F,) ’F12‘-1>di?2 dFl} . 7)
B RBII

C,, are determined by the variational technique.
In this method of solution the local-orbital equa-

tion [Eq. (7)] is used in integral form. If one uses

the notation of Hartree, 2 one has for the 1s shell

in Li*

Itis this equationwhichwe will solve iteratively for
the lithium halide crystals. Invoking the lattice
symmetry, it is necessary to solve Eq. (7) for both
a Li* and an X - lattice site.

B. Method of Solution

1s= Ko+ 2F%(1s,15) - G%(1s,18)+ Vy, ,  (10)

Equation (7) is to be solved using the analytic
expansion techniques of Roothaan.® This method
has been used previously to obtain solutions for the
free CI- ion, °'!° the Br~ ion,!* and the F~ ion.® In

and for the np shell of C1”

this method, one assumes the one-electron solu-
tion (dropping the subscript referring to the lattice
site) to be of the form

¢,(F) =R, (7)Y (6, p)X(s) . (8)

In Eq. (8) the ¥;"’s are the usual spherical har-
monics and the X’s are the spin functions. Then
one assumes

’VR,,[(/V):Z]‘ Cjnl le(r) ’

P, (r)=N, """ exp(- Z,,7) (9)

2+24; j+3

Ny;=[2z,)) /(21+ 24, + 2)1]V?

The quantities A;; and Z;; are either set by varia-
tional techniques or otherwise determined. The

TABLE V. The fluorine orbitals are given for both
the free ion and the LiF crystal. The normalization
chosen is E,Cﬁ,f 1.

j Cio; Cooj Cotj
Free ion 1 0.778122 0,082 182 0.068222
2 0.124024 0,059816 0,343162
3 0.591516 0,240537 0.676917
4 -0.168621 0.026460 0,643332
5 0,027204 —-0,787052 —0.074111
6 0.007684 —0.553971
7 —0,004222 -0, 069100
Crystal 1 0.778075 0.081802 0,066 004
2 0.123480 0,059759 0.342894
3 0.591661 0,242616 0.647003
4 —~0.168725 0,021947 0.665854
5 0,027306 —0,780186 —0.126857
6 0.007639 —0, 563129
7 —0.004208 —0,067 734
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TABLE VI, The chlorine ion orbitals are given in free space and in the LiCl crystal. The normalization
chosen is chf,,f 1.
J Coj Cooj Csoj Caty Cs1y
Free ion 1 0,838748 0,274 404 0.085654 0,035792 0.016475
2 0.016207 0,002 254 -0,000169 0,341779 0. 054640
3 0,322 883 0.282 570 0,097782 0.938 861 0.338205
4 -0.313642 -0.25004 —0.120651 -0.001885 —0.145742
5 0.282 767 —0.796 700 -0.205331 0.019 121 —0.544533
6 -0,112708 —0.384156 —0.276684 -0,008634 —0.694377
7 0.026265 -0.002011 0.508816 0.001600 —0.,287094
8 —0.015685 —0.,006 020 0,740437
9 0.004186 0,001676 0.206614
Crystal 1 0.838394 0,274574 0.085598 0, 035844 0.017 550
2 0.014900 0,001976 —0.000147 0,341382 0.047003
3 0,232 146 0,282 659 0,097 129 0,938 959 0.342 845
4 -0.313982 -0.249998 -0.116 000 —0.002 573 -0.163889
5 0.283122 —0.796 624 —0.211443 0.020415 —0.488331
6 -0.112875 —0.384132 -0,271583 -0, 009 943 -0.730251
7 0,026 320 —0.002 035 0,502 281 0,002 570 -0.276374
8 -0.015722 —0,006 065 0,744 897 0.000757 0.070455
9 0.004197 0.001693 0.209809
€p= Kpp+ 2F °(np, 18) + 2F °(np, 25) + 2F *(np, 3s)+ 6F°(np, 2p) + 6F°(np, 3p) - 1 G'(np, 1s)
-5G'(np, 25) -3 G'(np, 3s) - G°tup, 2p) = G°(np, 3p) - 0.4G*(np, 2p) - 0. 4G*(np, 3p) + V,, (11)
TABLE VII. The bromine ion orbitals are given in free space and in the LiBr crystal. The normalization
chosen is Z,Cf,“: 1.
j Cioj Caoj Cso5 Cyo; Coyj Csyj Cuyj Cyyj
Free ion 1 0.988316 0.318 424 0,129509 0.041 520 0.155636 0,055 366 0.013738 0.051 836
2 0,144 863 0.192 586 0,076 024 0.023 708 0.963 736 0.315855 0.096 578 0.308338
3 -0,015697 -0.729571 -0,292020 -0,091232 0.211 547 0,181161 0.047 802 0. 542 486
4 0,012837 -~0,554566 —0,430410 -0.153770 0.046484 —0.345795 —0.094146 0,766 566
5 -0.,923362 —0,110747 —0,462644 0.204422 -0.008121 -—0.858684 —0.323529 0.142 568
6 0,023799 0.092 369 0,663 131 0.215529 0.003206 —0.083781 0,041937
7 -0,014589 ~0.030025 0.228283 0.127586 -—0.000493 -0.018095 0.725964
8 0.001 036 ~0,000439 0.209722 -0,680340 0.000260 0,008 697 0.526 995
9 =~0.000573 0.00583 -0,012192 -0.615244 -0,000109 -0.003821 0.261093
0  0.000200 ~0.000239 0.004455 —0,140848
Crystal 1 0.988347 0,318 304 0.129256 0.041 466 0.155643 0,055239 0,011531 0,051 846
2 0,144 849 0,192 578 0,075 962 0.023 818 0.963 733 0,316 026 0,100718 0,308 304
3 -0.015646 —0,729481 —0,291735 —-0,091608 0,211 546 0.180742 0,039172 0,542 661
4 0,012764 -0,554119 -—0,429080 -0.152570 0.046515 —0.345198 —0.078004 0.766 409
5 -0,023037 -0.111981 0,457 433 0.191645 -0,008166 —0.858995 —0.343122 0,142 816
6 0,032 296 0,094 364 0.66174 0.237821 0.003237 —0.083368 0.063 582
7 -0,014347 -0,031014 0.223 973 0.114294 -0.000505 —0,018240 0,689 343
8 0.001012 -0,000326 0.030226 -0,674324 0.000269 0.008 768 0.587 966
9 <0.000558 0.000511 -0.012527 -0,620659 -0.000118 —0.003840 0,198 569
0 0.000194 -0,000213 0,004587 -0,140578
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TABLE VIII. The jodine ion orbitals are given in free space and in the Lil crystal. Z,-Cf,e,- =1.
J Cuoy Cao; Caos Caos Cso; Caij Cstj Catj Cs1y Cas Caoy
Free 1  0.908751 0.256507  0,095829  0.025364  0.013466  0.976380  0,210702  0,107499  0.050609  0,196383  0.098725
space 2  0.218448  —0.232535 —0.076394 -0.015542 -0.007873  0.200409 —0.018519  0.011767  0.007853  0,912755  0.485891
3 -0.205193 —0.703736 —0.469050 —0.157342 —0.086688 —0.043688 —0,723071 =-0.599550 —0.305746 =—0.259236 —0.182102
4 0.109253 0.196784  0.848575  0.338725  0,191636  0,033438 0.341377  0.658317  0.366594  0.229501 =—0,407 046
5 -0.085398 —0,171069  0.044201 —0,083019 -0.052020 —0.022569 —0.211386  0.364924  0.243941 -0,077976 —0.739719
6 0.091798 0.197648  0.602650 —0.602483 —0,476065  0,040734 0.386915 -0,200261 —-0,700172  0,045486 =—0,080518
7 ~0,151448 —0.332446 —0.065349  0.465561  0.633786 —0,035343 —0.338382  0.147047  0.027082 —0.017004 -0.04059
8  0.156525 0.347255  0.130496 —0.449535 =—0,210177  0.008267 0.808771 —0.203278 —0.450019
9 -0.085195 ~0,191027 —0.075110  0.235682  0,522269 ~—0.002157 0.021385  0,004889 —0.128305
10 0.041026 0.092834  0.037911 -0.114011 =—0,052250 0, 000458 0.004578 —0,000928 —0.004053
11 -0,017712  —0.040211 —0.016649  0.049655  0,069422

Crystal 1  0.908752 0.256505  0.095823  0,025367  0.013703  0,976382 0.210746  0,107519  0.048190  0.196937 0,098 880
2 0.218451  -0.232528 -0,076387 -0,015545 =-0,008002  0,200405 —0.01s532  0,011769  0.007241  0,913723  0.485504
3 -0.205195 —0.703738 -0,469029 -0.157345 =—0,088250 —0,043684 —0.723186 —0.599672 -—0.289873 —0,257433 —0.180381
4 0.109252 0.196789  0.848546  0.338752  0.195118  0.033434 0.341406  0.685463  0.346285  0.227737 —0,409255
5 -0.085398 —0,171073  0.044158 —0.083010 =—0.053235 -—0.022565 =—0.211356  0,346893  0.242377 —0.076910 —0.739059
6  0.091796 0.197654  0,065702 —0,602602 —0,482551  0.040726 0.386801 —0.199844 -0.707385  0,044681 —0,081473
7 -0.151445 -0.332451 -0.119456  0.465565  0.638540 —0,035335 —0.338247  0.146564  0.081461 —0.016668 ~0.040443
8  0.156521 0.347255  0.130618 —0,449496 =—0.201321 0,008 265 0.080701 —0.203059 ~0.466758
9 -0.085192 -0.191020 —-0,075176  0,235452  0.515780 ~—0,002156  ~0.021346  0,004794 =—0.099269
10 0.041024  0.092821  0,037929 —0.113618 —0,029810  0.00457 0.004570 —0,000909  0.013855
11 -0,017711  -0.040202 -0.016649  0.049372  0,054941

In this notation the term V,, is to specify the term

V,,,,=(nx[ UA]nx) ,

UAz—Zl“T%—Z‘E‘ +4 Z'f¢ij(Fz)]F12|'l dt, . (12)
5 |IRgl B,J

III. RESULTS

Although the one-center integrals which occur in
this theory could be evaluated analytically, the
author has evaluated these integrals by numerical
techniques using previously developed’ and tested
computer codes. The multicenter integrals would

need to be computed numerically in any event. Suf-
ficient accuracy was maintained so that the one-
electron eigenvalues agreed with previously ob-
tained values of 1 part in 1000 or better. In all
cases the final one-electron orbitals agreed with
previously obtained results within the self-consis-
tency tolerance of 1 part in 1000 established for
this calculation, This self-consistency require-
ment on the wave functions produced one-electron
eigenvalues which were consistent to at least 1
part in 10000. In testing these results one curious
fact emerged: In the case of Cl™ using the values
of Z’s and A’s given by Watson and Freeman, '°

the resulting C’s for the s levels obtained by the

TABLE IX. The free-ion one-electron energy parameters are given for the Li*, F~, C1~, Br~, and
1~ ions. The parameters for C1™ according to Refs. 9, 10, and 13 are also given. Ry are used.

Param- Li’ F~ Br- I~ cl- cl- c1- c1-
eter (Ref. 9) (Ref. 10) (Ref. 13)
€4 -5,597 -~51,73 -—980.1 —2354 —-209,2 -209.0 —-209.0 —209.0
€9 -2.159 -129.8 -359.1 -20,48 —20.46 —20.46 —20.46
€34 -19.07 -75,06 -1.473 —1.466 —-1.471 —1.454
€4 -1.370 ~13.84
€5 -1.110
€9p -0,3712 -~116.4 -330.7 -15.39 -15.39 -15,40 -15.39
€35 —-14,27 — 65,42 —0.3035 -0.3004 —0.3036 —-0.2970
1w ~0.2767  —10.35
€s5p -0.2619
€u -5.761 - 48.29

—4.249
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TABLE X. The one-electron energy parameters are
given for the LiF, LiBr, and Lil crystals. Ry are used
and the definition of the parameters is given in the text.

Crystal
param- LiF LiCl LiBr Lil
eter

Li' €54, ~-4.762  —4.,910  —4, 957 -5.079

X~ €4 —52.62 -210.0  -980.8 —2354,
€y9s —3.059 -21,16 -130.4  -539.6
€335 -2.162 —19,72 -75,59
€445 -2,024 14,36
€456 -1.636
€15 36%1077  11x1077 6x10""  24x1077
€636 18x10"  1x107  10x107!
€1sas 0.0 —43x1077
€1s5s -92x1077
€936 17%10°7 5x10°7  31x1077
€2sts 2x107" -120%1077
€as5s —254x1077
€3s4s -5x10"7 -55%107"
€3s5s —127%x10"7
€ 4555 623 %107
€ppp ~—1.274 16,07 —117.1 -340.2
€apap —-0.9965 —14.92 -65,96
€1p1p —0.9325 —10.87
psp ~0.7896
€ap3p ~-155%10"7  4x107  15%107
€9pap ~4x107"  —1x107
€apsp 69x107
€3p1p ~201x10""  -37x107"
€3p5p 1608x 107
€4p5p 268x107"
€aa3 —6.408 —48.81
€10u —4.769
€31 4x1077

author were in poor agreement with those of Watson
and Freeman, even though the resulting orbitals
and one-electron eigenvalues were in good agree-
ment. Since the physical quantities were in good
agreement, no serious effort was expended in
understanding the disagreement of the C’s. It is
obvious that this difference is due to computer
coding differences and/or different computer op-
erating systems. In fact, using our current codes,
the values of the C’s are somewhat dependent upon
the compiler used.

In the case of C1- and Br- the values of the A’s
and Z’s given by Watson and Freemanwere used. 10,11
In the case of Li*, F~, and I" the author determined
the A’s and Z’s by a combination of scaling the Z’s
from one system to another and the variational
theorem. No great effort was expended in minimiz-
ing the total system energy. It was considered suf-
ficient to obtain good values for the one-electron
eigenvalues and eigenvectors. Calculations were
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perfomed for the free ion as well as for the solids.
A common set of A’s and Z’s was used for solid-
state and free-ionic calculations. The values of the
A’s and Z’s used are given in Tables I-III.

In the solid-state calculation, the detailed part of
U, was only constructed for the nearest neighbors;
however, the point-ion part of the potential was
considered exactly out to about four lattice con-
stants. This degree of accuracy seems to be con-
sistent with the use of an expansion linear in inter-
atomic overlap.

In Table IV the values of the C’s for the Li* ion
in free space and the several crystals are given.

In Tables V-VIII the C’s for the free ion and the
Li X crystals are given for the F-, C1", Br-, and I"
ions. The normalization chosen is that

m
2. Ciu=1 . (13)
Jj=1

In Table IX the one-electron eigenvalues are given
for the various free ions. In the case of C1” we
also present the free-ion one-electron eigenvalues
given by other authors. %1113 1t js seen that a good
degree of agreement is achieved among the several
calculations.

Finally, in Table X the one-electron energy
parameters are presented for the several crystals.
These are not the eigenvalues of Eq. (7), the local-
orbital equation, but the expectation values of the
Fock operator, Eq. (1), for the solutions to Eq.

(7) accurate to first order in interatomic overlap;
thus one defines

E"l’n.l:=6”:<nl1F|n'l,> . (14)

It is noted that except for the inner orbitals these
one-electron expectation values have no direct
physical meaning since the translational symmetry
of the lattice is neglected here, and hence all band
effects are neglected. Thus if one requires energy
bands, it is necessary to use these wave functions
in a proper energy-band calculation. Such a cal-
culation has been performed with considerable
success by the author for LiC17’® and a calculation
is currently under way for LiBr.

In conclusion, it has been possible to obtain self-
consistent solutions to the local-orbital Hartree-
Fock equations for the lithium halides. These sol-
utions are useful for energy-band calculations and
defect calculations.® The amount of computer
time required to complete such a calculation varies
from about 10 min of IBM 360-75 time for LiF to
3 h for Lil. It is also seen from Tables IV~-VIII
that the principal effect of the lattice is to cause
distortions of the outer-shell orbitals. The inner
shells are essentially stable.
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Expressions have been derived in the quasiharmonic approximation for the change in nor-
mal-mode frequencies associated with thermal expansion in a nonprimitive lattice. The work
is formulated in terms of coupling parameters for an undistorted lattice with cubic anharmon-
icity. Symmetric finite-strain parameters and appropriate internal strains are introduced in
such a manner that the formulation exhibits explicitly the invariance of the crystal potential en-
ergy and normal-mode frequencies under rigid-body rotations. As a numerical application, the
coefficient of linear expansion and the phonon frequency distributions at 300 and 800 °K have
been calculated for zirconium hydride with a short-range central-force model including third-

nearest-neighbor forces.

I. INTRODUCTION

The temperature dependence of phonon frequen-
cies in a crystal can be conveniently divided into
two parts: (1) a quasiharmonic part associated
with thermal expansion, which results in a change
of interatomic distances and a corresponding
change in the harmonic force constants, and (2) a
part arising directly from terms in the potential-
energy expansion of higher order than quadratic in
powers of displacements of the atoms from their
mean positions. We shall refer to the latter con-
tribution, which is present even if the crystal is
held at constant volume, as a pure anharmonic ef-
fect. In this paper we are concerned with the ef-
fects of thermal expansion on phonon frequencies.
This problem was considered in a plausible but
nonrigorous manner by Maradudin and Fein! as
part of a study of anharmonic effects on neutron
scattering by Bravais crystals. Further justifica-
tion for their result was later provided by Maradu-
din® in a separate study also limited to Bravais
crystals, in which explicit expressions for thermal
deformations and frequency shifts in terms of force

constants were given. Neutron scattering and ther-
mal expansion in more general anharmonic crystals
have been studied by Cowley.® However, in these
treatments the introduction of finite-strain param-
eters* was carried out in an approximate manner
and internal strains (relative displacement of sub-
lattices) were not included. It turns out that it is
possible to introduce finite-strain parameters rig-
orously, so that at all stages of the calculation the
phonon frequencies are manifestly invariant under
rigid-body rotation of the crystal (in the absence of
external forces or fields). Constructing the for-
malism in this manner is not only desirable from the
standpoint of elegance but is also essential in the
event that an extension to higher orders of approxi-
mation becomes necessary - for example, over
wide temperature ranges for a strongly anharmonic
crystal.

It is the purpose of the present paper to study
thermal expansion and related phonon frequency
shifts in nonprimitive lattices, employing a rigor-
ous introduction of finite-strain parameters and
appropriate internal strains. The calculation fol-



